
Give or take
Block and inode allocation in Spectrum
Scale

Tomer Perry
Spectrum Scale Development
<tomp@il.ibm.com>

Louise Bourgeois Give or Take 2002

mailto:tomp@il.ibm.com

Outline

● Relevant Scale Basics

● Allocation types

● Map based

● Share based

Outline

● Relevant Scale Basics

● Allocation types

● Map based

● Share based

Some relevant Scale Basics
”The Cluster”

• Cluster – A group of operating system
instances, or nodes, on which an
instance of Spectrum Scale is deployed

• Network Shared Disk - Any block
storage (disk, partition, or LUN) given to
Spectrum Scale for its use

• NSD server – A node making an NSD
available to other nodes over the network

• GPFS filesystem – Combination of data
and metadata which is deployed over
NSDs and managed by the cluster

• Client – A node running Scale Software
accessing a filesystem

nsd

nsd
srv

nsd nsd

nsd
srv

nsd
srv

nsd
srv

CCCCC
CCCCC

CCCCC
CCCCC

CCCCC
CCCCC

CCCCC
CCCCC

CCCCC
CCCCC

CCCCC
CCCCC

CCCCC
CCCCC

CCCCC

Some relevant Scale Basics
MultiCluster

• A Cluster can share some or all of its
filesystems with other clusters

• Such cluster can be referred to as
“Storage Cluster”

• A cluster that don’t have any local
filesystems can be referred to as “Client
Cluster”

• A Client cluster can connect to 31
clusters (outbound)

• A Storage cluster can be mounted by
unlimited number of client clusters
(Inbound) – 16383 really.

• Client cluster nodes “joins” the storage
cluster upon mount

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCC

CCC

CCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCC
CCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCC
CCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCC
CCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCC
CCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCC
CCCCCCCCCCCCCCCCCCCCCCCCC

Some relevant Scale Basics
Node Roles

• While the general concept in Scale is “all nodes were made equal” some has special roles

Config Servers

 Holds cluster
configuration files

 4.1 onward supports
CCR - quorum

 Not in the data path

Cluster Manager

 One of the quorum
nodes

 Manage leases,
failures and recoveries

 Selects filesystem
managers

 mm*mgr -c

Filesystem Manager

 One of the “manager”
nodes

 One per filesystem
 Manage filesystem

configurations (disks)
 Space allocation
 Quota management

Token Manager/s

 Multiple per filesystem
 Each manage portion

of tokens for each
filesystem based on
inode number

Some relevant Scale Basics
From disk to namespace

● Scale filesystem (GPFS) can be described as loosely coupled layers

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

NSD NSD NSD NSD NSD NSD NSD NSD

FS disk FS disk FS disk FS disk FS disk FS disk FS disk FS disk

Storage Pool Storage Pool

Filesystem

Fileset FilesetFilesetFileset

Some relevant Scale Basics
From disk to namespace

● Scale filesystem (GPFS) can be described as loosely coupled layers

● Different layers have different properties

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

NSD NSD NSD NSD NSD NSD NSD NSD

FS disk FS disk FS disk FS disk FS disk FS disk FS disk FS disk

Storage Pool Storage Pool

Filesystem

Fileset FilesetFilesetFileset

Size/MediaType/device

Name/Servers

Type/Pool/FailureGroup

BlockSize/Replication/LogSize/Inodes….

inodes/quotas/AFM/parent...

Some relevant Scale Basics
From disk to namespace

● Scale filesystem (GPFS) can be described as loosely coupled layers

● Different layers have different properties

● Can be divided into “name space virtualization” and “Storage virtualization”

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

Disk/
LUN/
vdisk

NSD NSD NSD NSD NSD NSD NSD NSD

FS disk FS disk FS disk FS disk FS disk FS disk FS disk FS disk

Storage Pool Storage Pool

Filesystem

Fileset FilesetFilesetFileset

Storage Virtualization

Namespace Virtualization

Outline

● Relevant Scale Basics

● Allocation types

● Map based

● Share based

Resource allocation
In distributed file systems

• One the main challenges in distributed software in general, and distributed filesystem in
particular, is how to efficiently manage resources while maintaining scalability

• Spectrum Scale approach was always “Scalability through autonomy” (tokens, metanode,
lease protocol etc.)

• In the context of this session, we will limit the discussion to space allocation and
management: subblocks and inodes (essentially, inode allocation is actually “metadata
space management”)

• Common approach, taking CAP theorem into account, is to use eventual consistency in
order to minimize the performance impact while still providing reasonable functionality.

Resource allocation
One size doesn’t fit all

• Although there are many similarities between subblock allocation and quotas, there are
substantial differences which eventually lead us to use different mechanisms for each

Type Managed entity Change rate Allocation method

Space
Allocation

Storage Pools
Filesets (inodes)

Adding disks
Adding filesets

Map based

Quotas Users/Groups/Filesets
Users/Groups@Filesets

Administrator
initiated

Share based

Resource allocation
One size doesn’t fit all

• Although there are many similarities between subblock allocation and quotas, there are
substantial differences which eventually lead us to use different mechanisms for each

Type Managed entity Change rate Allocation method

Space
Allocation

Storage Pools
Filesets (inodes)

Adding disks
Adding filesets

Map based

Quotas Users/Groups/Filesets
Users/Groups@Filesets

Administrator
initiated

Share based

Static

Dynamic

Outline

● Relevant Scale Basics

● Allocation types

● Map based

● Share based

Allocation map based management

• Due to the relatively “static” nature of a filesystem space management it is possible to use
the allocation map based approach

• One of the main advantages of this approach is that with proper planning, its relatively
easier to allow each node to manage its own allocation independently

• The basic approach is to try and divide the managed resource into “regions”
• When a node needs to resources to be allocated, the filesystem manager assign a region

to that node
• From now on, the node can use all the resources in that region
• The number of regions is affected by the “-n” filesystem/pool creation paramter

(while one can change the -n parameter using mmchfs, it will only apply to pools created
after the change)

Block allocation map

• Divided into a fixed number of n equal size “regions”
– Each region contains bits representing blocks on all disks

– Different nodes can use different regions and still stripe across all disks (many more regions
than nodes) – based on the -n parameter on storage pool creation

Disk 1

last blockblock 1

region 0 region 1 region 2 region n-1

block 0

Disk 2

Disk 3

Block allocation map

• When adding more disks:
– Alloc map file is extended to provide room for additional bits

– Each allocation region no consists of two separately stored segments

block n/2-1block 1

region 1, segment 0

Disk 1

Disk 2

Disk 3

region 0, segment 0 region 2, segment 0

block 0

Disk 4

last blockblock n/2+1block n/2

region n-1, segment 0

region 0, segment 1 region 1, segment 1 region 2, segment 1 region n-1, segment 1

Inode Allocation map

• The inode allocation map follow the same principal of the block allocation map
• That said, there are differences due to the way inodes are being used:

– inode have different “allocation states” (free/used/created/deleted)

– The use of multiple inode spaces (independent filesets) might imply non
contiguous allocation, allocation “holes” and other properties that might make
management a bit more complex

– Inode use is usually more “latency sensitive” - thus require using function shipping
methods in order to maintain good performance (file creates etc.)

– Inode expansion might be manual (preallocating) or automatic (upon file creation)

• Inode space expansion logic is outside the scope of this session

–

–

●

Allocation map

• So what should I use for -n on file system creation?
• Try to estimate the number of nodes that “might” use the filesystem in the future
• Don’t just “use a large number”. The overhead of managing many segments/regions might

be constly
• As long as the number is not “way of” - it should be OK.

–

–

●

Outline

● Relevant Scale Basics

● Allocation types

● Map based

● Share based

Quotas 101

• While the main goal of this session is to explain how quotas works in Scale, we should still
define some basic quota related terminology

• “A disk quota is a limit set by a system administrator that restricts certain aspects of file
system usage on modern operating systems. The function of using disk quotas is to
allocate limited disk space in a reasonable way” (source: wikipedia)

• There are two main types of quota: disk quotas and file quotas. The former limits the
maximum size a “quota entity” can use while the latter define the number of file system
elements that a “quota entity” can use (“quota entity” might be a user, a group or a fileset)

• Other common terms are:
– Soft quota: a.k.a. warning level. When used with grace period implies real limit

– Hard quota: the effective limit. A quota entity can’t use more than that limit

– Grace period: a time frame during which soft quota can be exceeded before it
becomes a hard limit

–

●

Spectrum Scale quotas

• The dynamic nature of quotas, makes it extremely difficult to balance between flexibility
and performance impact

• Thus, an eventual consistency approach was chosen – using “quota shares”
• Basically, the quota manager (part of the filesystem manager role) assign shares to

requesting clients. A client can use the share unless being revoked (more details to come)
• Since the quota manager don’t know how much of a given share is actually being used, a

new term was introduced: in_doubt.
• The in_doubt value represent the shares that are “out there”. Its a factor of the share size

and the number of nodes mounting the filesystem
• In order to get an exact quota usage, the quota manager needs to contact all mounting

node in order to revoke the current shares they have.
●

Spectrum Scale quotas
”The share”

• Since we don’t want a client to contact the quota server for each request, we use the
concept of shares (block and file share)

• Every time a node want to allocate a resource, it will contact the server and will receive a
share of resources

• In the past, the share size was static (20) but configurable. So one would need to balance
between performance impact and functionality (what if in_doubt is bigger than the
quota…)

• Nowdays, dynamic shares are being used. It starts with qMinBlockShare/qMinFileShare (
* blocks/inodes) and might change based on usage patterns

●

Spectrum Scale quotas
”The share flow”

• The quota client node will calculate how much blocks/inodes it should request based
on historical data and will send the request to the quota server. It might be extremely
aggressive with that…

• The quota server will consider the request from a much wider perspective: Number of
nodes, remaining quota (-in_doubt), grace period etc.

• The quota server will reply to the client request with the granted resources (blocks or
inodes)

●

Spectrum Scale quotas
”The share flow” - under pressure

• It is also important to understand what’s going on when we’re getting “close to the
limit”. It always takes in_doubt into account as if its used

– Soft limit exceeded:

● The grace counter kicks in

● SoftQuotaExceeded callback is being executed (if configured)

– Grace period ends:

● Quota exceeded error

– Getting close to hard limit:

● Quota server revoke from all clients for each request...performance impact

●

Spectrum Scale quotas
tips and tricks

• Sometimes, balancing the impact of quotas might be challenging. For example,
imagine and application which all its threads are being “throttled” due to quota revokes
slowing down access to other quota objects which are not “close to the edge” (who
said Ganesha?).

• In those cases, it might be better to “fail fast”
• There are two major ways to achieve that:

– Use soft quotas only with short grace period (1 sec for example). In this case,
shortly after the soft quotas were exceeded, the app will get quota exceeded
error. It will use “a little more than the limit”

– Use the (undocumented) qRevokeWatchThreshold parameter. Every time
we’re hitting HL-
(Usage+inDoubt)<qRevokeWatchThreshold*qMinShare we need to do
a revoke. We will add this revoke to the watch list. We won’t do another revoke
to that object for the next 60sec. So, if another share request will come in – we
will deny it. This will use “a little less than the limit”

●

	Welcome to the IBM Presentation Template — Arial variant
	Tick marks
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

